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2 Instytut Fizyki UMK, Grudzia̧dzka 5, 87-100 Toruń, Poland
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Abstract
Absorption spectra of chemically synthesized uniform and multilayer
semiconductor nanocrystals in a magnetic field are investigated theoretically.
The nanocrystals are modelled by spherical barrier/well potentials. The electron
states are calculated within the effective mass model. A four-band k · p

Hamiltonian, accounting for the valence subband mixing, is used to obtain
the hole states. The magneto-optical transition spectrum depends strongly on
the size and composition of the nanocrystals. In the case of small uniform
quantum dots, only the linear Zeeman splitting of the electron and hole
energy levels is observed even for very strong magnetic fields. In larger
nanocrystals, the quadratic magnetic interaction turns out to be important and
the transition spectrum becomes complicated. The most complicated influence
of the magnetic field is found in quantum dot–quantum well systems in which
the lowest electron and hole states are localized in a thin spherical layer. It is
shown that transitions that are optically active when no magnetic field is applied
remain strong even in very strong fields.

1. Introduction

The investigation of magnetic field effects in semiconductor quantum dots is of universal
interest because the weaker quantum confinement and lighter electron effective mass than in
atomic physics make it possible to observe effects that for natural atoms would require magnetic
fields many orders of magnitude stronger than those accessible in the laboratory [1–6]. Such
investigations are also of practical importance: magnetic fields can be used to tune quantum
dot lasers and other optical nanodevices [7–10]. The application of external magnetic field to
quantum dots, considered as qubits for quantum information processing [11], is thought of as
a way to perform one-gate operations (spin rotations) and also to manipulate the tunnel barrier
between coupled dots to perform multigate operations [12, 13].
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Theoretical studies of magnetic field effects and magneto-optical transitions in quantum
dots have dealt so far almost exclusively with two-dimensional disc-like or ring-like systems.
In the majority of works, parabolic confining potentials and one-band models for both electrons
and holes have been employed [1, 2]. The reason is twofold: both self-organized dots and rings
proposed as quantum dot lasers and electrically gated dots proposed as qubits for quantum
computing have rather planar geometry. On the other hand, two-dimensional models with
parabolic potentials are particularly easy as regards numerical calculations.

Chemically synthesized nanocrystals have several advantages over other kinds of quantum
dot. They are the smallest dots fabricated with the highest uniformity of sizes achieved in a
given sample (only very recently has a size distribution as low as 2% for self-assembled PbSe
quantum dots on PbTe quasisubstrates been reported [14]). They often have spherical shapes
and are most similar to atoms. They can be synthesized as multilayer nanocrystals, i.e. built of
concentric layers (shells) of different semiconducting materials with the shell thicknesses down
to a single monolayer [9, 15, 16]. Electrons and holes can be localized in such structures within
very thin spherical-like wells, which enhances the possibilities of tailoring their optical spectra.
Two-dimensional and three-dimensional arrays of such nanocrystals reveal the highest density
of nanoparticles and the strongest interactions between the neighbouring quantum dots [17, 18].
Such quantum dots are also considered as possible building blocks for future optoelectronic
nanodevices and quantum computers.

In our previous works an extensive study of the magnetic field effects on the electron and
hole energy levels of uniform and multilayer nanocrystals has been performed using a four-band
k ·p model that accounts for the valence subband mixing [19, 20]. To our knowledge, so far no
detailed studies of e–h magneto-optical transition rates using this model have been made. In
this paper we use the above-mentionedmodel to calculate e–h transitions for homogeneous and
multilayer quantum dot–quantum barrier (QDQB) and quantum dot–quantum well (QDQW)
nanocrystals, for a wide range of applied magnetic field.

2. Theory

In our model the conduction band states (electrons) are described by means of the one-
band effective mass equation. For spherical nanostructures the electron wavefunction can
be explicitly written as �e = f lm

n (r)|l, m〉|Sσ 〉, where f lm
n (r) is the radial and |l, m〉 the

angular part of the envelope function and |Sσ 〉 = |S〉|σ 〉 is the Bloch function, with σ = α

or β. When an external magnetic field B = (0, 0, B) is applied, the spherical symmetry is
lowered to axial symmetry and the electron wavefunction, written in cylindrical coordinates, is

�e
Fz

= f e
m(ρ, z)eimφ |Sσ 〉. (1)

The proper treatment of the valence band states (holes) requires taking into account
the valence subband mixing. To this end we use the four-band k · p Hamiltonian, that
couples the heavy-hole (HH) and light-hole (LH) subbands, and employ the envelope function
approximation [21–24]. The use of the heavy-hole–light-hole (HH–LH) coupling opens new
channels for dipole transitions in comparison to the single-band approximation. In the spherical
case (no magnetic field present) the valence band states are eigenstates of the total angular
momentum F = L+J , where J is the Bloch angular momentum (the Bloch angular momentum
quantum number for holes is J = 3/2) and L is the envelope angular momentum [25]. In axial
symmetry, the Hamiltonian commutes only with the operator Fz of the projection of the total
angular momentum F onto the field axis and the states are labelled only by Fz . To identify
these states by their spherical notation at B = 0 we label them as (nQF , Fz), where Q denotes
the spectroscopic notation for the lowest value of the envelope angular momentum L for a
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given F [26]. The four-component hole function is [24]

�h
Fz

=
Fz+3/2∑

M=Fz−3/2

f h
M (ρ, z)eiMφ |3/2, Jz〉δJz,(Fz−M), (2)

where |3/2, Jz〉 are the Bloch functions for holes. The Hamiltonian eigenvalue problem reduces
to the solution of coupled partial differential equations for the envelope function components
f h

M (ρ, z) (or a single-differential equation for f e
m). Finite-difference methods allow us to

numerically solve these equations by transforming them into eigenvalue equations of huge,
sparse, and asymmetric matrices. These matrices are diagonalized by the iterative Arnoldi
solver [27] implemented in the ARPACK package [28].

Rates of optical transitions between the conduction and valence band states are calculated,
excluding exciton effects4. The optical transition matrix element,

|〈�e
F ′

z
|p|�h

Fz
〉|2 =

∣∣∣∣
∑

M

∫
f e
m f h

Mρ dρ dz δmM 〈Sσ |p|3/2, (Fz − M)〉
∣∣∣∣
2

= S2
eh |〈Sσ |p|3/2, (Fz − M)〉|2δmM , (3)

is a product of the electron–hole overlap, S2
eh , and the angular factor. The angular

factor is calculated in terms of the square of the Kane parameter P2 = |〈S|px |X〉|2
after explicitly writing the Bloch factors in terms of the eight band-edge basis functions
{|S, 1/2〉, |S,−1/2〉, |X, 1/2〉, . . . , |Z ,−1/2〉} [31].

Note that the symmetry selection δmM -rule selects, if any, only one of the four components
of the hole function. Thus, for instance the transition between

�e = f e
m |m = 1〉|S, α〉 (4)

and

�h
Fz=3/2 =

Fz+3/2∑
M=Fz−3/2

f h
M (ρ, z)|M〉|3/2, (Fz − M)〉, (5)

in z-polarized light, leaves only one term,

S2
eh |〈Sα|z|3/2, 1/2〉|2 = S2

eh
2
3 P2, (6)

of equation (3).
If we consider unpolarized light (i.e., we add all three (x-, y-, and z-) components of p)

and consider transition to both |Sα〉 and |Sβ〉, then the transition rate is just the overlap integral
times the Kane parameter (S2

eh P2).
We perform the calculations for nanocrystals as large as 24 nm in diameter. The hole

energy levels are closely spaced in such dots and a large number of hole states have to be taken
into account to reliably model even the low-energy part of the magneto-optical transitions.
In the case of the QDQB system, the total number of transitions that we calculate is 640
(128 × 5 field values). The hole wavefunctions, equation (2), have four components, each one
being obtained on a two-dimensional (200 × 399) grid in a ρ × z array, thus being defined
on 314 424 grid points. This requires parallel computation to get the solutions in a reasonable
time. This is why we limit our calculations to the four-band approach. We have checked
nonparabolicity effects on the conduction band in the case of small and large uniform quantum
dots. The results obtained show a shift of the electron energy levels towards lower values and

4 Although the e–h Coulomb interaction can yield some rearrangement of the energy levels, the main effect is a
parallel shift of the entire spectrum toward lower energies [29]. In the case of the ground transition, this excitonic
shift can be estimated using the Brus formula [30], that for the largest QD investigated yields ≈20 meV.
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a moderate reduction of the splitting of the degenerate states produced by the magnetic field.
However, these effects do not lead to essentially different results and conclusions and we have
not considered nonparabolicity effects in the calculations.

3. Uniform nanocrystal

3.1. Small nanocrystals

In this section we study the evolution, versus magnetic field, of the low-energy electron–hole
transition spectra for a small uniform (3 nm radius) InAs quantum dot. Such nanocrystals are
routinely synthesized by wet chemistry methods and have almost spherical shapes with sizes in
the range 2–10 nm [32]. In our study the surrounding medium is modelled by a 4 eV external
potential barrier for both electrons and holes. The k · p parameters that we use are: effective
electron mass m∗ = 0.024; Luttinger parameters γ1 = 19.7 and γ = 8.4 [34]. Although the
magnetic field breaks the spherical symmetry, we use only two Luttinger parameters (spherical
approximation) in order to make a proper comparison with the results obtained at zero magnetic
field. The magnetic fields considered here range from B = 0 to 40 T in 10 T steps. Since
the density of the hole energy levels is higher than the density of electron levels, we calculate
transitions only between the 1s electron ground state and the five low-lying hole states, namely
1P3/2, 1S3/2, 1P5/2, 1D5/2, 2S3/2. This represents 24 doubly degenerate transitions to the
electron states 1s|Sα〉 and 1s|Sβ〉.

When B = 0, the axial symmetry selection δmM -rule is supplemented by the spherical
symmetry selection δlL -rule. Then, only the 1s ← 1S3/2 and 1s ← 2S3/2 transitions are
allowed in the energy region studied (in spherical symmetry the hole wavefunctions have two
components with angular momenta L and L + 2).

When the magnetic field is on, the degenerate Fz-components of the nS3/2 hole state split
and the two transition bands (n = 1, 2), allowed at B = 0, also split into four components
(3/2, 1/2,−1/2,−3/2). Figure 1 shows the calculated e–h transitions versus magnetic field.
For B = 0, only 8 transitions (out of the total number of 24 transitions calculated) are nonzero,
yielding two sets of fourfold-degenerate 1s ← 1S3/2 and 1s ← 2S3/2 transitions. Since the
nanocrystal studied is very small, the quantum confinement is strong, the energy levels are
well separated, and one can easily follow the evolution of the spectrum with the magnetic field
in figure 1. It is worthwhile emphasizing that transitions forbidden at B = 0 by the symmetry
selection δlL -rule remain basically forbidden also for B �= 0. For B as strong as 30 T, two
additional very weak transitions (ten times weaker than the 1s ← 1(2)S3/2 ones) are seen at
energies 2146 and 2048 meV. They correspond to 1s ← 1D5/2 (Fz = ±1.5). At B ∼ 30 T the
1D5/2 (F = 1.5) state anticrosses with 1P5/2 (F = 1.5) and for B = 40 T a slightly stronger
1s ← 1P5/2 (Fz = 1.5) transition is seen in between the ±Fz-components of the 1s ← 2S3/2

transition.
Note that when B �= 0, just 20 out of the 24 calculated transitions corresponding to 1P3/2,

1S3/2, 1P5/2, 1D5/2, 2S3/2 hole states are allowed by the symmetry selection δmM -rule, but
even at B = 40 T, only 8 of them (those fulfilling the δlL -rule) are strong. This is because in
small nanocrystals the radius of the maximum charge density is much smaller than the radius
of the lowest Landau orbit,

[
2|Fz + 1| h̄

eB

]1/2
, for the fields considered. Thus, only the linear

Zeeman, and not the quadratic term, is important (see figure 1) and the quantum dot states are
negligibly influenced by the field.

3.2. Large nanocrystals

Let us consider now a larger homogeneous InAs nanocrystal of radius 8 nm. The weaker
confinement yields a higher density of electron and hole energy levels, which now start to cross
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Figure 1. The low-energy part of the magneto-optical spectrum of the spherical uniform InAs
nanocrystal of radius 3 nm. The spectra at different fields, from B = 0 (bottom) up to B = 40 T
(top) in 10 T steps, are offset. Transitions at B = 0 are explicitly labelled. Transition positions are
given in millielectronvolts, while the absorption intensity is given in arbitrary units. The spectrum
is modelled by adding 1 meV wide Lorentzian envelopes to the transition strengths.

and mix for weaker fields. Thus, we include in the calculations of the transition rates not only
the 1s ground electron state but also the first excited state, 1p (components 1p−1, 1p0, 1p+1),
and the m = −2 component of the second excited 1d state. We consider 12 hole states in
the transitions to the 1s electron ground state and 5 hole states in transitions to the excited 1p
and 1d−2 electron states. Thus, we take into account 74 transitions to the 1s electron state
(they come from 1S3/2, 1P3/2, 1P5/2, 1D5/2, 2S3/2, 2P3/2, 1D7/2, 1F7/2, 1F9/2, 3S3/2, 1G9/2,
and 2D5/2 hole states). However, the symmetry selection δmM -rule reduces this number to
48 transitions (twelve low-lying hole states of the four allowed Fz = 3/2, 1/2,−1/2,−3/2
components). Adding the number of the possible transitions to the 1p and 1d−2 electron state,
we end up with the total number of 128 transitions calculated.

Figure 2 shows the evolution of the low-energy spectrum of the e–h transitions for five
values of the magnetic field (0, 10, 20, 30, and 40 T). At B = 0, only five transitions are
seen; from left to right they are: 1s ← 1S3/2, 1s ← 2S3/2, 1s ← 3S3/2, 1p ← 1P3/2, and
1p ← 1P5/2. When the magnetic field is on, both the electron and hole levels split into 2k + 1
components (k = l for the electrons and F for holes). Thus, the 1s ← nS3/2 transition
splits into four components, while 1p ← 1P3/2 splits into ten components (not 12, because
1p1(m = +1) ← 1P3/2 (Fz = −3/2) and 1p1 (m = −1) ← 1P3/2 (Fz = 3/2) are forbidden
by the symmetry selection δmM -rule). Finally, 1p ← 1P5/2 splits into 12 components (not
18, for similar reasons). At B = 10 T the components of 1s ← nS3/2, n = 1, 2, 3, are
well separated. This is not the case for the 1p ← 1P3/2 and 1p ← 1P5/2 transitions, whose
components appear mixed in the energy region considered.

Looking at figure 2 we can see that, at B = 10 T, there are six transitions in the region
between 720 and 750 meV (in fact there are seven transitions located at 721, 725, 727, 732,
742, 743, and 744 meV, but the ones arising at 742 and 743 overlap, so only one wider
transition is seen). Only four of them can arise from the 1s ← 2S3/2 transition. They
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E(meV)
3/2 3/2 3/2 5/23/2
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Figure 2. As figure 1, but for a large InAs nanocrystal of radius 8 nm.

appear at 721, 725, 742, and 743 meV for the Fz-components equal to −1.5,−0.5, 0.5, 1.5
of 1s ← 2S3/2, respectively. The first one is weak and the others are strong. The additional
three optically active transitions in this region are: 1s ← 1D7/2 (F = −1.5) at 727 meV,
1s ← 1D5/2 (F = 1.5) at 732 meV and 1s ← 2P3/2 (F = 0.5) at 744 meV. The latter
two transitions are weak but the 1s ← 1D7/2 (F = −1.5) is strong. This is due to a strong
interaction between the 2S3/2 (Fz = −1.5) and 1D7/2 (Fz = −1.5) hole states that anticross
at B = 10 T and to a large extent ‘exchange’ their wavefunctions.

For B between 20 and 40 T, more transitions appear to be optically active in the energy
range investigated. The hole states 1D5/2 (F = 1.5) and 2P3/2 (F = 0.5)undergo anticrossings
with 1P5/2 (F = 1.5) and 1D7/2 (F = 0.5) and the transitions from these states to 1s become
stronger. Simultaneously, the components Fz = 1.5 and 0.5 of the transition 1s ← 2S3/2

become weaker.
In summary, the most remarkable feature of the evolution of the transition spectrum versus

magnetic field is that, except for a few weak transitions, the transitions that are strong for B �= 0
correspond basically to the ones that split from the transitions allowed at B = 0. In some
cases, when the hole levels of the same symmetry (the same Fz) anticross, the labelling of
the corresponding transitions can change, as happens at B = 10 T for the 1s ← 2S3/2 and
1s ← 1D7/2 (F = −1.5) transitions discussed above. Another remarkable anticrossing and
‘exchange’ of the hole wavefunctions occurs for 1S3/2 (Fz = −1.5) and 1P3/2 (Fz = −1.5),
which for B > 10 T becomes the lowest transition. The strength of this transition decreases
as the field increases and its energy distance to the next optically active transition increases
simultaneously (see figure 2). This effect should be seen in an experiment as a dark or weak
magnetoexciton.

Since tracing the evolution of the different components in the transition spectrum shown
in figure 2 is difficult, we present in figure 3 the same spectrum but for z-polarized light
and including only transitions to the |Sα〉 electron component. Under these conditions only
transitions from the hole (Fz − 1/2) component are allowed, so the 1s ← nS3/2, n = 1, 2, 3,
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Figure 3. The low-energy part of the magneto-optical spectrum of a spherical uniform InAs
nanocrystal of radius 8 nm for z-polarized light and including only transitions to the |Sα〉 electron
components.

do not split and the 1s ← 1P3/2, 1s ← 1P5/2 split into three components (p0, p+1, and p−1).
The resulting spectrum is simple enough for one to see how it evolves with the field and that
the transitions forbidden at B = 0 continue to be very weak for the increasing field. Two
strong transitions indicated by arrows in figure 3 correspond to 1d−2 ← 1D5/2 (Fz = −2.5),
a high-energy transition allowed at B = 0, that significantly lowers in energy when the field
increases.

4. Quantum dot–quantum barrier systems

In this section we consider a three-layer nanocrystal built of an internal InAs core of radius
7 nm, a middle InP shell of thickness 1 nm, and an external 3.5 nm InAs cladding. Since the
forbidden energy gap of InAs is narrower than the gap of InP, the middle shell acts as a barrier
separating two spherical InAs wells (barrier height [33]: 0.52 eV for electrons and 0.42 eV for
holes). As before, the surrounding medium is modelled by a 4 eV external potential barrier.
Since we are mainly interested in the states having energies below the InP barrier and thus
expect a small charge density in the barrier region, the effective mass and Luttinger parameters
of InAs are used for the whole nanocrystal.

As in the case of a large homogeneous nanocrystal, the weak confinement leads also here
to a dense distribution of the energy levels. Then, excited transitions enter into the low-energy
region of the spectrum as the magnetic field increases. In this case we have included in the
calculations the 1s, 1p (+1, 0,−1), and 1d (−2,−1) electron states and eight low-lying hole
states for the four allowed Fz-components. Thus, since the δmM -rule yields M = m = 0 for all
transitions to the ground electron state 1s (m = 0), the allowed Fz-values are: 1.5, 0.5, −0.5,
and −1.5 (see equation (2)), and the eight low-lying hole states included in the calculations
are: 1P3/2, 1S3/2, 1P5/2, 2S3/2, 1D5/2, 2P3/2, 3S3/2, and 1D7/2. In a similar way, we calculate
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E(meV)
1p1P

5/23/2
1s1S 1s3S
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1s2S 1p1P 1p2P
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Figure 4. The low-energy part of the magneto-optical spectrum of a spherical multishell InAs
(7 nm)/InP (1 nm)/InAs (3.5 nm) QDQB nanocrystal. The spectra at different fields, from B = 0
(bottom) up to B = 40 T (top) in 10 T steps, are offset. Transitions at B = 0 are explicitly labelled.
The transition positions are given in millielectronvolts, while the absorption intensity is in arbitrary
units. The spectrum is modelled by adding 1 meV wide Lorentzian envelopes to the transition
strengths.

all allowed transitions to the excited electron states. For example, all the hole states involved
in transitions to the 1p−1 electron state are the Fz = 0.5, −0.5, and −1.5 components of the
above hole states and, additionally, the Fz = −2.5 component of 1P5/2, 1D5/2, 1D7/2, 2P5/2,
2D5/2, 1F7/2, 1F9/2, and 2F7/2 states. Altogether, there are 320 transitions, but only 184 are
allowed in axial symmetry and must be calculated for each value of the magnetic field.

Figure 4 summarizes the evolution of the low-energy part of the e–h transition spectrum of
the QDQB system versus the magnetic field. At B = 0 only six allowed transitions are seen.
They are: 1s ← 1S3/2, 1s ← 2S3/2, 1s ← 3S3/2, 1p ← 1P3/2, 1p ← 1P5/2, and 1p ← 2P3/2.

At first glance the magnetic field dependence of the QDQB transition spectrum goes along
similar lines to that for the homogeneous nanocrystal (figure 2): the 1s ← nS3/2 transitions
are well separated at low magnetic field and the 1p ← nPk/2 ones are mixed, even for very
small B-values. However, there are several differences caused by the presence of a thin InP
barrier in the QDQB system. First, the 1p ← 2P3/2 transition appears very close to the
1p ← 1P5/2 one. This is because the 2P3/2 hole state builds its charge density mainly in the
external InAs cladding with a node in the region of the InP barrier, while the charge density of
the 1P5/2 state is mostly localized in the internal well, which allows for similar energies of the
corresponding energy levels [19]. The second and most striking difference is a reversal of the
relative intensities of the 1s ← 2S3/2 and 1s ← 3S3/2 transitions. Again, it can be explained
by the presence of the InP barrier in the QDQB structure: the intensities are proportional
to the overlap integral for the electron envelope function and one of the components of the
hole envelope. Figure 5 shows the L = 0 component of the 1S3/2, 2S3/2, and 3S3/2 states
for both the homogeneous nanocrystal and the QDQB system. The corresponding electron
envelope functions are also shown. One can see how the barrier influences the shape of the hole
wavefunction, being responsible for the weak 1s ← 2S3/2 and strong 1s ← 3S3/2 transitions in
the QDQB system. It is also worthwhile to note that although in this case the lowest transition,
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Figure 5. The envelope component with L = 0 of the hole states 1S3/2, 2S3/2, 3S3/2 of both the
spherical uniform InAs nanocrystal of radius 8 nm and the spherical multishell InAs (7 nm)/InP
(1 nm)/InAs (3.5 nm) QDQB nanocrystal. The corresponding 1s electron envelope functions are
also shown.

1s ← 1S3/2 (Fz = −1.5), does not cross with the 1p ← 1P3/2 transition, its intensity decreases
when the magnetic field increases.

Some of the hole states, which at B = 0 build significant parts of their charge densities
in the external cladding, may undergo crossovers to the internal core in the strong magnetic
field [19]. Since this usually does not happen for the corresponding electron state in a given
transition, such a transition progressively lowers in intensity, as happens, for example, to
the 1p ← 2P3/2 transition. Another difference, also caused by a density crossover, is the
ordering of the split components of the 1s ← 3S3/2 transition. In homogeneous nanocrystals
the ordering (versus increasing energy) is Fz = −3/2, −1/2, 1/2, 3/2 (as it is for every
F = 3/2 splitting in the homogeneous nanocrystal). This is not the case in the QDQB system.
At B = 10 T the sequence of the levels in the QDQB structure is Fz = −3/2, −1/2, 3/2,
1/2. This reordering can be understood by looking at the hole wavefunctions. At B = 0 T
the 3S3/2 (Fz = 3/2) state has the maximum of its charge density localized in the external
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cladding, while this is not the case for the 3S3/2 (Fz = 1/2) state. When B < 10 T the energy
of the 3S3/2 (Fz = 3/2) state almost does not increase, since its charge density in the external
cladding does not change much (it only slightly concentrates in two regions close to the z-axis).
For B > 10 T a crossover occurs and the 3S3/2 (Fz = 3/2) state starts to increase in energy
faster than the 3S3/2 (Fz = 1/2) state (as is the rule for uniform dots).

5. Quantum dot–quantum well systems

Let us consider now a three-layer nanocrystal built of an internal barrier-acting InP core, a
middle well-acting InAs shell, and an external barrier-acting InP cladding. The radius of the
core is 8 nm, the thickness of the InAs shell is 2 nm, and the external InP cladding is 2 nm
thick. The band offset is 0.52 eV for electrons and 0.42 eV for holes [33], and the height of
the surrounding barrier is assumed to be 4 eV (from the bottom of the InAs well). Since we
are investigating the bound states having charge densities localized mainly in the middle shell,
the electron effective mass and valence band Luttinger parameters of InAs are, for simplicity,
used for the whole structure.

In the QDQW system investigated, the density of the electron and holes states is even
higher than in the structures studied in the previous sections. Additionally, the effect of a
periodic change of the electron ground state energy versus magnetic field induces changes
in the low-energy part of the spectrum as the field strength increases. Therefore, in order to
study the evolution of the low-energy part of the e–h transition spectrum, we include the 1s,
1p (m = 1, 0,−1), and 1d (m = −2,−1) electron states. For each electron state we consider
transitions from the five low-lying hole states for all the allowed Fz-components. The total
number of transitions that we deal with is 236, but the symmetry selection δmM -rule reduces
the number of calculations to 120 transitions for each value of the magnetic field.

In order to give insight into the complication of the transition spectrum, we plot in figure 6
the transition energies of all the transitions studied, disregarding the fact that many of them
may have negligible intensity. This can be seen in figure 7, where all transition energies are
represented by vertical bars, while the spectrum is modelled by adding 1 meV wide Lorentzian
envelopes to the transition strengths. Figure 6 helps us to see how the transition energies cross
as the magnetic field increases and, in particular, how the energies of the excited transitions
decrease. The numerous crossings observed and the progressive change of the symmetry of
the lowest transition are direct consequences of the behaviour of the electron and hole energy
levels of QDQW structures in a magnetic field, reported by us in [19, 20].

As seen in figure 7, the transitions 1s ← nS3/2, for n > 1, do not appear in the
low-energy region. This is because the second state of each symmetry is pushed towards
higher energies, since it must have a node in the well (just the opposite to what happens
in the QDQB system). When the field is on, the multiplets split and even at B = 10 T
the spectrum becomes complicated. At B = 30 T the transition that is the lowest one
at B = 0, i.e. 1s ← 1S3/2 (Fz = −1.5), is exceeded by two other transitions: weak
1p1 ← 1P5/2 (Fz = −2.5) and strong 1p1 ← 1P3/2 (Fz = −1.5) transitions, and overlaps with
two strong transitions, namely 1d−2 ← 1D5/2 (Fz = −2.5) and 1p1 ← 1P3/2 (Fz = −0.5).
It is worth pointing out an important difference between the QDQW system and all the other
nanocrystals studied: while for the uniform and the QDQB nanocrystals the low-energy part
of the transition spectrum reflects the behaviour of the hole energy levels in a magnetic field,
the structure of the QDQW transition spectrum is governed mainly by the evolution of the
electron ground state symmetry versus B .

Since tracing the evolution of the different components in the QDQW transition spectra
shown in figure 7 is extremely difficult, we present in figure 8 the same spectrum but for
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Figure 6. Transition energies (meV) versus magnetic field (T) for a spherical multilayer InP
(8 nm)/InAs (2 nm)/InP (3 nm) QDQW nanocrystal. Full curves: |Fz | = 0.5; dashed curves:
|Fz | = 1.5; densely dotted curves: |Fz | = 2.5; and dotted curves: Fz = −3.5. Allowed transitions
at B = 0 are explicitly labelled.

z-polarized light and including only transitions to the electron |Sα〉 components. Under these
conditions only transitions from the hole (Fz −1/2) component are allowed, so the 1s ← 1S3/2

state does not split and both 1p ← 1P3/2 and 1p ← 1P5/2 split into three components (p0,
p+1, and p−1). The quadratic effect is so pronounced in the QDQW structure that even in this
very simplified spectrum it is difficult to trace the evolution of the transitions. In order to help
the reader, the lines connecting the same states for different fields are included. This figure
confirms again that the strong signals observed at high fields are basically the ones that split
from the transitions allowed at B = 0.

6. Concluding remarks

We have investigated magneto-optical transitions in uniform InAs and multilayer InAs/InP
nanocrystals by using a one-band model for the electron states and a four-band k · p approach
to describe the hole states. We have shown that in the case of small uniform quantum dots, the
linear Zeeman splitting of the electron and hole energy levels alone determines the structure of
the transition spectrum in magnetic fields up to 40 T, leading to linear and symmetric splitting
of the transition components of similar strengths. In a large uniform nanocrystal the quadratic
magnetic effects also becomes important. With increasing magnetic field the strong splitting
of the energy levels, degenerate at B = 0, yields a mixing of the components belonging to
different transitions and the magnetoabsorption spectrum becomes complicated. It has been
found that in high magnetic fields the lowest energy component (Fz = −1.5) of the ground state
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Figure 7. As figure 4, but for a spherical multishell InP (8 nm)/InAs (2 nm)/InP (3 nm) QDQW
nanocrystal.
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Figure 8. The low-energy part of the magneto-optical spectrum of a spherical multishell InP
(8 nm)/InAs (2 nm)/InP (3 nm) QDQW nanocrystal with z-polarized light and including only
transitions to the |Sα〉 electron components. The spectrum is modelled by adding 1 meV wide
Lorentzian envelopes to the transition strengths.

transition (1s ← 1S3/2) becomes very weak and increases its distance to the next optically
active transition, which should be seen in experiment as a dark magnetoexciton. We have
shown that magneto-optical spectra of chemically synthesized multilayer nanocrystals differ
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significantly for nanocrystals of different size, composition, and sequence of layers. Many
differences observed between the spectra of uniform and QDQB structures have been explained
as results of the presence of a thin InP barrier-acting shell in multishell nanocrystals. We have
shown that the transition spectrum depends strongly on whether the thin middle shell is a well-
acting or barrier-acting layer. This can be important in the modelling of such nanocrystals as
potential building blocks for optoelectronic nanodevices. It has also been found that transitions
that are allowed at B = 0 are also allowed for higher fields, although their labelling can change
due to anticrossings of the energy levels.
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